Bibliography:ビブリオグラフィ A List of Better Thoughts

 これまでに引用元としてきた論文・文献をビブリオグラフィ( Bibliography )としてまとめました(わたしの論文・著作はこちら・あるいはGoogle Scholarへ).分野としては,科学教育・STEM教育・環境教育などの範囲における文献となります.
 今はとりあえず貼ってあるだけですが,追々リンクなども追加していけたらと思っております.また,細かい作業に向かない性格ゆえ,間違いがないとは言い切れません.ご利用の際は,ご自身でよく確認の上,ご利用ください.責任は負えません.

まとめ開始:2021年6月30日~
最終更新日:2021年6月30日

Bibliography

A

1AAAS (1993). Benchmarks for Science Literacy, Oxford University Press.
2AAAS(1989). Science for All Americans, Oxford University Press, 訳. 長崎ら, 邦題. 全てのアメリカ人のための科学(2005). 
3Achieve. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academies Press.
4Adler, M. J. (1982) The Paideia proposal: an educational manifesto, NY: Macmillan Publishing Co., INC. 
5American Association for the Advancement of Science Project 2061: Education for A Changing Future, January 15, 1988
6American Association for the Advancement of Science. (1989). Science for all Americans. American Association for the Advancement of Science. Oxford, New York: Oxford University Press. 
7American Association for the Advancement of Science. (1991). Prologue: design in general. In American Association for the Advancement of Science (eds.), Designs for Science Literacy. Oxford, New York: Oxford University Press.
8American Association for the Advancement of Science. (1993). Research Findings for Chapter 11: Common Themes. Retrieved December 10, 2015, from http://www.project2061.org/publications/bsl/online/index.php?chapter=15&section =C&band=11 
9American Society for Engineering Education (n.d.). eGFI – Dream Up the Future. [ONLINE] Available at: http://www.egfi-k12.org/. [Last Accessed 11 December 2014]. 
10Åström, M. (2008). Defining integrated science education and putting it to test. P.138. Doctoral Dissertation. Norrköping, Sweden: The Swedish National Graduate School in Science and Technology Education, FontD.

B

11Bailey, R. (1978). Disciplined creativity for engineers (2nd ed.). Ann Arbor: Ann Arbor Science Publishers, Inc. 
12Barr, B. B. (1994). Research on problem solving: Elementary school. In D. L. Gabel (Ed.), Handbook of Research on Science Teaching and Learning: A Project of the National Science Teachers Association (pp. 237–247). Macmillan Library Reference. 
13Baum, F., MacDougall, C., and Smith, D. (2006). Participatory Action Research. Journal of Epidemiology and Community Health, 60(10), 854–7. 
14Bear J. (1993). Creativity and Divergent Thinking. Task-Specific Approach, Hillsdale. Lawrence Erlbaum Associates, Inc 
15Binning & Barrett (1989) Validity of Personnel Decisions: A Conceptual Analysis of the Inferential and Evidential Bases, Journal of Applied Psychology, 74(3):478-494
16Boulding K E (1956), “General systems theory: The skeleton of science”,  Management Science,  Vol.2: #3,  pp.197-208,  INFORMS
17Breiner, J. M., Johnson, C. C., Harkness, S. S., And Koehler C. M. (2012). What is stem? A discussion about conceptions of stem in education and partnerships. School Science and Mathematics 112(1):3-11.
18Brown, J. C. (2017) A metasynthesis of the complementarity of culturally responsive and inquiry-based science education in k-12 settings: implications for advancing equitable science teaching and learning. Journal of Research in Science Teaching 54(9):1143–1173.
19Bruner, J. (1961). the Act of discovery. Harvard Education Review 31(1):21–32.
20Bugliarello G.(1988). The Physical Sciences, Information Sciences and Engineering Report of an Ad Hoc Panel, The 
21Bybee R. W. (2011). K-12 Engineering Education Standards. Opportunities and Barriers, 21-29. 
22Bybee, R. W. (1987). Science education and the science-technology-society (S-T-S) theme. Science Education, 71(5), 667–683. doi:10.1002/sce.3730710504 
23Bybee, R. W. (1997). Contemporary reform of science education. In L. Peake & V. Merecki (Eds.), Achieving Scientific Literacy from Purposes to Practices (pp. 25–45). Portsmouth, NH: Heinemann. 
24Bybee, R. W. (2013). The case for STEM education challenges and opportunities. Arlington, Virginia: National Science Teachers Association.
25Bybee, R.W. (2011). Scientific and engineering practices in K—12 classrooms. The Science Teacher, 78(9), 34–40. 

C

26Canestrari & B. Marlowe (Eds.), Educational foundations: An anthology of critical readings (Third Edit., pp. 141–149). SAGE Publications, Inc. 
27Carr, R. L., Bennett, L. D., and Strobel, J. (2012). Engineering in the K-12 STEM standards of the 50 U.S. states: An analysis of presence and extent. Journal of Engineering Education, 101(3), 539–564. 
28Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. doi:10.3102/0013189X032001009 
29Cochran, W. (1954). Some methods for strengthening the common X2 tests. Biometrics, 10(4), 417–451. 
30Committee on Conceptual Framework for the New K-12 Science Education Standards, National Research Council(2012). A Framework for K-12 Science Education. Practices, Crosscutting Concepts, and Core Ideas, National Academies of Sciences, National Academies Press, Washington D.C. 
31Committee on Prospering in the Global Economy of the 21st Century . an agenda for American science and technology ; Committee on Science, Engineering, and Public Policy(2007). Rising above the gathering storm. Energizing and employing America for a brighter economic future, National Academies Press, Washington D.C. 
32Committee on Standards for K-12 Engineering Education; National Academy of Engineering. (2010). Standards for K-12 Engineering Education? National Academies Press, Washington D.C. 
33Common Core State Standards Initiative (2009). Common Core State Standards, http.//www.corestandards.org/ 
34Crismond, D. P., and Adams, R. S. (2012). The Informed Design Teaching and Learning Matrix. Journal of Engineering Education, 101(4), 738–797. 

D

35D’Ambrosio, U., Black, P., El-Tom, M., Matthews, M., Nebres, B., & Nemetz, T. (1992). Summer symposium on educating for citizenship in the 21st century. In Science , Mathematics , Engineering , and Technology Education for the 21st century (p. 73). Washington D.C.: National Science Foundation Directorate for Education and Human Resources Division of Research, Evaluation and Dissemination. 
36David, E. E., And Truxal, J. G. (1964). the Man-Made World. NY: McGraw-Hill Book Company.
37DeBoer G. E.  (2006). History of the Science Standards Movement in the United States. Impact of State and National Standards on K-12 Science Teaching, 7-49. 
38DeBoer G. E. (1991). A History of Ideas in Science Education. Implications for Practice, Teachers College Press, 1234 Amsterdam Avenue, New York, NY 10027. 
39DeBoer, G. (1991). A history of ideas in science education: Implications for practice. 1234 Amsterdam Avenue, New York, NY 10027: Teachers College Press. 
40Deboer, G. E. (2002). Student-centered teaching in a standards-based world: Finding a sensible balance. Science & Education, 11(4), 405–417. 
41Deboer, G. E., Lee, H. S., And Husic, F. (2010). Assessing integrated understanding of science. In Kali, Y., Linn, M. And Roseman, J. E. (eds.) Designing coherent science education: implications for curriculum, instruction, and policy. New York: Teachers College Press, Columbia University.
42Dewey, J. (1913). Interest and Effort in Education. Boston, MA: Houghton Mifflin Company. 
43Dewey, J. (1938). Logic: The theory of inquiry. Holt, Rinehart and Winston (1960th ed.). New York: Holt, Rinehart and Winston, INC. 
44Drake, S. M. (1991) How our team dissolved the boundaries. Educational Leadership 49(2):20-22.
45Drake, S. M., and Burns, R. C. (2004). Meeting Standards Through Integrated Curriculum. Alexandria, Virginia: Association for Supervision and Curriculum Development
46Dugger W. E. Jr.(2007).  The status of technology education in the United States. A triennial report of the findings from the states. The Technology Teacher 67(1).14 

E

47Ennis R. H.(1989). Critical thinking and subject specificity. Clarification and needed research, Educational researcher, 18(3), 4-10. 

F

48Faheem, S. M., Yager, S. O., And Yager, R. E. (2015). Successful Use of Science Process Skills by Middle School Students. National forum teacher education journal 25:1-9.
49Felder, R. M. (1988). Creativity in engineering education. Chemical Engineering Education, 22(3), 120–125. doi:10.4271/560004 
50Fensham, P. J. (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884–896. doi:10.1002/tea.20334 
51Feyerabend, P. (1970). “Consolation for the specialist” in criticism and the growth of knowledge. NY: Cambridge University Press.
52Fick, S. J. (2017). What does three-dimensional teaching and learning look like?. Examining the potential for crosscutting concepts to support the development of science knowledge. Sci Ed. 2017;1–31. https.//doi.org/10.1002/sce.21313
53Fick, S. J., Nordine, J., & McElhaney, K. W. (2019). Proceedings of the Summit for Examining the Potential for Crosscutting Concepts to Support Three-Dimensional Learning. Charlottesville, VA: University of Virginia. Retrieved from http://curry.virginia.edu/CCC-Summit. 
54Finley & Encohs (2006), Impact of science standards on curriculum and instruction in the earth science. D. W. Sunal & E. L. Wright (Eds.), The impact of state and national standards on K-12 science teaching (1st ed.), 391 – 407,  Information Age publishing, Charlotte, USA.
55Finley, Nam, & Oughton (2011). Earth Systems Science: An Analytic Framework. Science Education, 95(6), 1066-1085
56Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61–65. 
57Ford & Pungo (1964) “The Structure of Knowledge and Curriculum”, 1-105, Rand McNally & Company
58Fortus, Dershimer, Krajcik, Marx, & Mamlok-Naaman(2004 ). Design-based science and student learning, Journal of Research in Science Teaching 41(10), 1081-1110. 
59Fortus, Krajcik, Dershimer, Marx & Mamlok-Naaman(2005). Design-based science and real-world problem-solving. International Journal of Science Education, 27(7). 855–879. 

G

60Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: SAGE Publications, Ltd. 訳: 小林信一(1997),「現代社会と知の創造」, 1-293, 丸善ライブラリー
61Glasersfeld, E. Von. (1974). Piaget and radical constructivist epistemology. In Smock, C. D. and Glasersfeld, E. Von. (eds.), Epistemology and Education. Follow through publication. 
62Glasersfeld, E. Von. (1984). An Introduction to radical constructivism. In Watzlawick, P. (eds.), The Invented Reality, New York, Norton.
63Glasersfeld, E. Von. (1995). Radical constructivism: a way of knowing and learning. NY: Routledge Falmer. 訳:橋本渉 (2010) ディカル構成主義. NTT出版,東京.
64Gómez Puente, S. M. (2014). Design-based learning: exploring an educational approach for engineering education Eindhoven: Technische Universiteit Eindhoven. DOI: 10.6100/IR771111
65Good, R., Herron, J., Lawson, A., & Renner, J. (1985). The domain of science education. Science Education, 69(2), 139–141. 
66Gorham, Newberry, & Bickart ( 2003 ) . Engineering accreditation and standards for technological literacy, Journal of Engineering Education, 92, Ashburn, VA. American Society for Engineering Education. 
67Grounlund, N. E. (1970). Stating behavioral objectives for classroom instruction. NY, Macmillan

H

68Hmelo-Silver, C. E., Duncan, R. G., and Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to KIRSCHNER, SWELLER, and CLARK (2006). Educational Psychologist 42: 99-107.
69Honey, M., Pearson, G., & Schweingruber, H. (2014). STEM Integration in K-12 Education: Status , Prospects, and an Agenda for Research Engineering. Washington, DC: The National Academies Press. 
70House of Representative. STEM education act of 2015, H.R. 1020 (2015). the United States of America: 114 U.S.C.
71House of Representative. STEM to STEAM act of 2017, H.R. 3344 (2017). the United States of America: 115 U.S.C.
72House of Representative. STEM to STEAM act of 2019, H.R. 3321 (2019). the United States of America: 116 U.S.C.
73Hurd, P. D. (1958). Science literacy : Its meaning for American schools. Educational Leadership, 16(1), 13–52. 
74Hurd, P. D. (1991). Why we must transform science education. Educational Leadership 49(2): 33–35.
75Hurd, P. D. (1998). Scientific literacy : New minds for a changing world. Science Education, 82(3), 407–416. doi:10.1002/(SICI)1098-237X(199806)82:3<407::AID-SCE6>3.3.CO;2-Q 
76Hutchins, R. (1968). The learning society. New York, The New American Library. 

I

77International Assessment for the Evaluation of Educational Achievement (IEA, 2013) TIMSS 2015 Assessment Frameworks. TIMSS & PIRLS International Study Center, Lynch School of Education. Boston College.
78International Technology Engineering Educators Association (2020). Standards for technological and engineering literacy: the role of technology and engineering in STEM education. https://www.iteea.org/STEL.aspx (参照日 2020年10月27日)
79ITEA (2007). Standards for Technological Literacy. Content for the Study of Technology, Phi Delta Kappan. 

J

80Jantsch, E. (1972). Towards Interdisciplinarity and Transdisciplinarity in Education and Innovation. Paris: Organization for Economic Cooperation and Development.
81Johnson J. R.(1989). Technology. Report of the Project 2061 Phase I Technology Panel, American Association for the Advancement of Science, Washington, D.C. 
82Johnson, M. (1967). Definitions and models in curriculum theory. Educational Theory 17(2):127-140. https://doi.org/10.1111/j.1741-5446.1967.tb00295.x

K

83Katehi, L., Pearson, G., & Feder, M. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. National Academy of Engineering and National Research Council of the National Academies. National Academies Press. 
84Kelly, G. A. (1955). Psychology of personal constructs. Norton.
85King, J.A. and Evans, K.M. (1991). Can we achieve outcome-based education? Educational leadership 49(2):73-75.
86Kitahara, T., & Ito, S. (1991). Japanese Systems Thinking (1st ed.). Tokyo, Japan: Chuo-Keizai Sha. 
87Koenig J. A.(2011). Assessing 21st Century Skills. Summary of a Workshop, Washington D.C., National Academies Press. 
88Kohn, A. (1994). Grading: The issue is not how but why. Educational Leadership, (October), 1–11. 
89Krajcik, J.S., Slotta, J.D., Mcneill, K.L. & Reiser, B.J. (2008). Designing learning environments to support students’ integrated understanding. In Kali, Y., Linn, M., and Roseman, J. E. (eds.) Designing coherent science education: Implications for curriculum, instruction, and policy, pp.39-64. NY, Teachers College Press.
90Kuhn, T. (1970). The structure of scientific revolutions. Chicago: The University of Chicago Press.
91Kumano, Y. (2012). The competencies which aimed by the middle school science curriculum. In S. of J. S. Teaching (Ed.), Now asking the competencies in school science-viewpoints for the new competencies (pp. 98–105). Tokyo, Japan: Toyokan. 
92Kumano, Y. (2014). Science & Technology Governance and the STEM Education. In Y. Kumano (Ed.), A fundamental study on the construction of the research theory of science education to develop the science & technology governance 188). Shizuoka, Japan: Shinohara Publishing Co., LTD. (Final rep., p. 

L

93Labov, J. B., Reid, A. H., and Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: a new biology education for the twenty-first century? CBE Life Science Education 9:10-16.
94Laforce, M. Noble, E., King, H., Century, J., Blackwell, C., Holt, S., Ibrahim, A., & Loo, S. (2016). The eight essential elements of inclusive STEM high schools. International Journal of STEM Education 3:21. DOI 10.1186/s40594-016-0054-z
95Lead States and Partners (2013), ”Next Generation Science Standards”, NGSS Achieve
Lederman, N. G. (2006, June). Research on nature of science: reflections on the past, anticipations of the future. In Asia-Pacific Forum on Science Learning and Teaching (Vol. 7, No. 1, pp. 1-11). The Education University of Hong Kong, Department of Science and Environmental Studies.
96Lederman, N. G. & Niess, M. L. (1997) Integrated, Interdisciplinary, or Thematic Instruction? Is This a Question or Is It Questionable Semantics? School Science and Mathematics 97(2):57-58.
97Lee, H., Seo, B., Park K., Kim, Y., Park, Y. & Park, B. (2013). Development and Implementation of Creative Design and Scientific Inquiry-based STEM Education Program. In Conference Programme and Abstracts Book (p. 147). Beijing, China: East-Asian Association for Science Education. 
98Lightman, A. and Gingerich, O. (1991) When Do Anomalies Begin? Science 255:7.
99Lynch, W. T. & Kline, R. (2000). Engineering practice and engineering ethics. Science, Technology, & Human Values 25(2):195-225.

M

100Marzano, R. J. (2009). Formative Assessment & Standards-Based Grading. Bloomington, IN: Solution Tree. 
101Matsuoka, Y. (2007). A Study of the Structure of Interrelation between “Interest” and “Effort” in Dewey’s Theory of Interest : Focusing on his Argument in Interest and Effort in Education. Journal of Education in Nihon University, 42(20070325), 59–74. 
102Mattes B (2008) , ”Education Action Research in Higher Education as Faculty Professional Development”, a Thesis of The Pennsylvania State University
103McComas W. F. & Nouri N. (2016): The nature of science and the next generation science standards: Analysis and critique, Journal of Science Teacher Education, 27(5), 555-576. 
104McIntyre, A. (1997). Constructing an image of a white teacher. Teachers College Record, 98(4), 653–681. 
105McIntyre, A. (2008). Participatory Action Research. Los Angeles, CA: Sage Publications. 
106MEXT (Ministry of Education Culture Sports Science and Technology) (n.d.). Course of Study. [ONLINE] Available at: http://www.mext.go.jp/a_menu/shotou/new-cs/youryou/index.htm. 
107Michaels, S., Shouse, A. W., & Schweingruber, H. (2008). Ready, Set, Science!: Putting Research to Work in K-8 Science Classrooms. (Board on Science Education Center for Education Division of Behavioral and Social Sciences, Ed.). Washington, DC: National Academies Press. 
108Minnesota Department of Education (2009). Minnesota Academic Standards Science K-12, Saint Paul. 
109Minnesota Office of Environmental Assistance (2002),  「環境リテラシーの学習内容と順序」, 齊藤・Iwan・奥村・原口・熊野 (2004). 1-120, SEEK
110Minnesota Office of Environmental Assistance. (2002). Environmental literacy scope and sequence. 520 Lafayette Rd. St. Paul, MN 55155-4100. 
111Mulligan, Jr.(1983). Integrating Concepts of Engineering and Science into Instruction in Grade Levels K-12  in Educating Americans for The 21st Century, A plan of action for improving mathematics, science and technology education for all American elementary and secondary students so that their achievement is the best in the world by 1995 “Source Materials”, The National Science Board Commission on Precollege Education in Mathematics, Science and Technology, National Science Foundation, Washington, D.C. 20550 

N

112National Academy of Engineering (2010). Standards for K-12 engineering education? Committee on Standards for K-12 Engineering Education; National Academy of Engineering. Washington D.C.: National Academies Press.
113National Academy of Engineering(2009). Engineering in K-12 Education . Understanding the Status and Improving the Prospects, National Academies Press, Washington D.C. 
114National Committee on Science Education Standards and Assessment, National Research Council(1996), National Science Education Standards, National Academies of Sciences. 
115National Geographic Society (2007).  Ocean Literacy: The Essential Principles of Ocean Sciences K–12.  An Ocean-Oriented Approach to Teaching Science Standards.  https://scied.ucar.edu/sites/default/files/images/long-content-page/ocean_literacy_brochure.pdf
116National Institute of Educational Policy Research. (2010). Reference Materials for Developing the Assessment Standards. Tokyo, Japan: National Institute of Educational Policy Research. 
117National Research Council. (1996). National science education standards. National Academies Press.  訳:長洲・熊野・丹沢(2001)「全米科学教育スタンダード」-アメリカ科学教育を展望する-, 梓出版社
118National Research Council. (2000). How People Learn: Mind, Brain, Experience and School, Expanded Edition. Washington, DC: The National Academies Press. 
119National Research Council. (2005). How students learn: history, mathematics, and science in the classroom. Committee on how people learn, a targeted report for teachers. Donovan M.S. and Bransford J.D. (eds.). Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
120National Research Council. (2007). Taking Science to School. Learning and Teaching Science in Grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Washington, D. C. National Academies Press.
121National Science Board (2007). A National Action Plan for Addressing the Critical Needs of the U.S. Science, Technology, Engineering, and Mathematics Education System 
122National Science Board. 2004. Science and Engineering Indicators 2004. Two volumes. Arlington, VA: National Science Foundation (volume 1, NSB 04-1; volume 2, NSB 04-1A). 
123National Science Teachers Association Press. (2007). Resources for Environmental Literacy Series: Five Teaching Modules for Middle and High School Teachers
124Noble, E., Ferris, K. A., Laforce, M. & Zuo, H. (2020). A Mixed-Methods Approach to Understanding PBL Experiences in Inclusive STEM High Schools. European Journal of STEM Education 5(1):02. https://doi.org/10.20897/ejsteme/8356
125Northrop, F. S. C., Margenau, H. (1950). The nature of concepts their inter-relation and role in social structure. Proceedings Stillwater conference. Stillwater, Okla., and New York: Oklahoma A. and M. College and the Foundation for Integrated Education, Inc.

O

126Olson, S., & Labov, J. (2014). STEM learning is everywhere: Summary of a convocation on building learning systems. Washington, DC: The National Academies Press. 
127Osborn, A. F. (1957). Applied imagination: Principles and procedures of creative problem solving. Charles Scribner’s Sons. (1st ed.). New York: Charles Scribner’s Sons. 

P

128Pear, J. J., & Crone-Todd, D. E. (2002). A social constructivist approach to computer-mediated instruction. Computers & Education 38:221–231.
129Penick, J. E. (1984). Science/Technology/Society. Focus on excellence Volume1, Number 5. Washington, D.C.: National Science Teachers Association. 
130Peters-Burton, E. E., Lynch, S. J., Behrend T. S., & Means, B. B. (2014) Inclusive stem high school design: 10 critical components, Theory into Practice 53(1) :64-71, DOI: 10.1080/00405841.2014.862125
131Phenix, P. H. (1962). Discipline as curriculum content. In Curriculum crossroad. pp. 56-65. New York: Teachers College, Columbia University.
132Phillips, D., & Burbules, N. C. (2000). Postpositivism and educational research. Lanham, Maryland: Rowman & Littlefield Publishers, Inc. 
133Postal, L. (2013). Common Core Q&A: Explaining New Standards for Florida Students- Orlando Sentinel. [ONLINE] Available at: http://www.orlandosentinel.com/features/education/os-common-core-qanda-20131004-story.html. [Last Accessed 11 December 2014]. 
134Pratt, H. (2013). The NSTA reader’s guide to a framework for k–12 science education practices, crosscutting concepts, and core ideas (2nd ed.). Arlington, Virginia: NSTA press.
135President’s Council of Advisors on Science and Technology. (2010). Prepare and inspire: K-12 education in science, technology, engineering, and math (STEM) for America’s future: Executive report. (President’s Council of Advisors on Science and Technology, Ed.). Executive Office of the President. 
136President’s Council of Advisors on Science and Technology. (2012). Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Report to the president. Executive Office of the President. 
137Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231. 

Q

138Quellmalz, E. S., Davenport, J. L., Timms, M. J., Deboer, G. E., Jordan, K. A., Huangm, C. W., Buckley, B. C. (2013) Next-Generation Environments for Assessing and Promoting Complex Science Learning. Journal of Educational Psychology, 105(4):1100 –1114. DOI: 10.1037/a0032220

R

139Roebuck, K. I., & Warden, M. A. (1998). Searching for the center on the mathematics-science continuum. School Science and Mathematics, 98(6), 328-333. 
140Roehrig, G., Moore, T., Wang, H., & Park, M. (2012). Is adding the E enough? Investigating the impact of K‐12 engineering standards on the implementation of STEM integration. School Science and Mathematics, 112(1), 31–44. 

S

141Saito T. (2016). A Research on Creativity in STEM Integrated Learning Environment Based on Task Specific Approach (Doctoral dissertation, 静岡大学). 
142Saito, T. (2020) Re-entry the Construct of STEM/STEAM Education. Japan Journal of Educational Technology. 44(3). 
143Saito, T., & Kumano, Y. (2015). A study about integrated activities and its assessments in STEM classes. In Shizuoka STEM Junior Project 2014-2015, A Report for the Future Scientist Program by JST (pp. 32–50). Shizuoka, Japan. 
144Saito, T., Anwari, I., Mutakinati, L., and Kumano, Y. (2016) A Look at Relationships (Part I): Supporting Theories of STEM Integrated Learning Environment in a Classroom – A Historical Approach, K-12 STEM Education, 2(2) :51-61 
145Saito, T., Gunji, Y., & Kumano, Y. (2015). The problem about technology on the STEM education: Some findings from action research on the professional development & integrated STEM lessons in informal fields. K-12 STEM Education, 1(2), 85-100. 
146Sanders, M. (2009). STEM, STEM education, STEM mania. Technology Teacher 68(4):20–26.
147Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28(9), 859–882. doi:10.1002/tea.3660280910 
148Scholz, R. W. & Tietje, O. (2002). Embedded Case Study Method: Integrating Quantitative and Qualitative Knowledge. Thousand Oak, CA: Sage.
149Scholz, R.W. (2011). Environmental literacy in science and society: from knowledge to decisions. Cambridge University Press.
150Scholz, R.W. Lang, D.J., Wiek, A., Walter, A. I. and Stauffaacher, M. (2006) Transdisciplinary case studies as a means of sustainability learning: historical framework and theory. International Journal of Sustainability in Higher Education 7(3):226-251.
151Schwab, J. (1962). The Teaching of Science as Enquiry. In The Teaching of Science (pp. 3–103). Cambridge, Massachusetts: Harvard University Press. 
152Schwab, J. J. (1964). Structure of the Disciplines: Meaning and Significances. In the structure of knowledge and curriculum, pp. 6–30. Rand: McNally & Company.
153Schwab, J. J., (1956). Science and Civil Discourse: The uses of diversity. Journal of General Education 9:132-143.
154Science Curriculum Improvement Study. (1968, 1974, 1978) Teacher’s Guide. University of California Barkley, California 94720 USA.
155Science SCASS States (2018). Using crosscutting concepts to prompt student responses. CCSSO science SCASS committee on classroom assessment.
156Scott, B. (2004). Second-order cybernetics: an historical introduction. Kybernetes 33(9/10):1365-1378.
157Scriffiny, P. L. (2008). Seven reasons for standards-based grading. Educational Leadership, 66(2), 70-74. 
158Senate. Every Student Succeeds Act (2015). Pub. L. 114-95, S1177, 20 U.S.C.. Education 
159Shizuoka Board of Education. (2002). Model of Standards Based Assessment. Shizuoka, Japan: Shizuoka University. 
160Simon, H. A. (1996). The science of the artificial. Third edition. London, England: MIT Press. 訳:稲葉元吉・吉原英樹(1999). 「システムの科学 第3版」. パーソナルメディア.
161Society for Neuroscience (2008): Neuroscience Core Concepts.  The Essential Principles of Neuroscience. 
162Standards to Provide Educational Achievement for Kids Act (2007): 20 U.S.C. 1400, 6311, 6312, 6332, 7801, 9621, 9622, 9623 and 9624. 

T

163The National Commission on Excellence in Education(1984): A Nation at Risk: The Full Account. USA Research, Cambridge, MA. 訳: 橋本貞雄(1984), 「危機に立つ国家-日本教育への挑戦」, 黎明書房 
164The National Science Board Commission on Precollege Education in Mathematics, Science and Technology ( 1983 ) : Educating Americans for The 21st Century, A plan of action for improving mathematics, science and technology education for all American elementary and secondary students so that their achievement is the best in the world by 1995 “Source Materials”, National Science Foundation Washington, D.C. 20550 
165Thomas, K. (1962). The structure of scientific revolutions. London: University of Chicago Press. 
166Tyler, R. W. (1950). Basic principles of curriculum and instruction. Chicago: University of Chicago Press.

U

167United Nations (2015). Transforming our world: the 2030 Agenda for Sustainable Development. 
168USGCRP (U.S. Global Change Research Program). 2009. Climate Literacy. The Essential Principles of Climate Science.  A Guide for Individuals and Citizens. 
169Uştu, H., Saito, T. & Mentiş Taş, A. Integration of Art into STEM Education at Primary Schools: an Action Research Study with Primary School Teachers. Systemic Practice and Action Research (2021). https://doi.org/10.1007/s11213-021-09570-z

V

170Vasquez, J. A., Sneider, C., & Comer, M. (2013). STEM Lesson Essentials, Grades 3-8: Integrating Science, Technology, Engineering, and Mathematics. (K. Bryant, Ed.). Washington, D.C.: Heinemann. 
171Victor J. Mayer & Yoshisuke Kumano (1999), ”The Role of System Science in Future School Curricula”, Studies in Science Education, Vol.34, pp.71-91
172Vyhmeister S (2001), “Student Involvement in Adventist Universities: Philosophical Issues”, First International Conference on the Seventh-day Adventist Philosophy of Education, 1-24

W

173Wang, H.-H. (2011). A New Era of Science Education: Science Teachers’ Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration. Doctoral Dissertation, University of Minnesota.
174Weiser (2019). Developing NGSS-aligned assessments to measure crosscutting concepts in student reasoning of earth structures and systems. Doctoral dissertation. Columbia University.
175Whyte, W. W. (1989). Advancing scientific knowledge through Participatory Action Research. Sociological Forum, 4(3), 367-385. 

Y

176Yager, R. E. (1986). Searching for excellence. Journal of Research in Science Teaching, 23(3), 209–217. 
177Yager, R. E. (2014). Exemplary STEM programs: Designs for success. In R. E. Yager & H. Brunkhorst (Eds.), Exemplary STEM Programs: Designs for success (pp. ix–xiv). Arlington, Virginia: National Science Teachers Association. 
178Yager, R. E. (2015). STEM: A focus for current science education reforms. K-12 STEM Education 1(1):1-4.
179Yager, R.E. (1996). Meaning of STS for science teachers. Science/Technology/Society as reform in science education, 16-24. NY: State University of New York Press.

日本語の文献

180伊勢田 哲治 (2010). 認識論的問題としてのモード2科学と科学コミュニケーション. 科学哲学 43(2):1-17.
181井庭 崇 (2019). クリエイティブ・ラーニング. 慶応義塾大学出版会,東京.
182一般社団法人 新・エネルギー環境教育情報センター(2013), 「エネルギー環境教育ガイドライン 2013」, 1-79
183熊野善介(1996): 全米科学教育基準(National Science Education Standards)の概要と最終報告書の比較とアセスメント基準, 高度情報化社会における科学・技術・社会(STS)教育開発に関する実践研究, 科学研究費補助金 一般研究(C), 課題番号 06680174 研究成果報告書, 平成8年3月, 15-31 
184熊野善介(2012): 中学校理科の教育課程が目指す学力, 第3章第2節,今こそ理科の学力を問う-新しい学力を育成する視点-, 日本理科教育学会編著,東洋館出版社,  98-105. 
185国立教育政策研究所(2007), 「環境教育指導資料[小学校編]」, 1-109, 国立教育政策研究所教育課程研究センター
186国立教育政策研究所(2011), 「評価規準の作成, 評価方法等の工夫改善のための参考資料」, 1-120, 国立教育政策研究所教育課程研究センター
187若林 明雄(1992). George A. Kelly の個人的構成概念の心理学 -パーソナル・コンストラクトの理論と評価-. 心理学評論 35(3):311-338. 
188松原 憲治 (2019). 資質・能力の育成を目指す教科横断的な学習としてのSTEM/STEAM教育と国際的な動向.資料5-2, 教育課程部会. 文部科学省. https://www.mext.go.jp/ (参照日 2020年10月27日)
189静岡市エコアッププログラム作成事業報告書, 平成15年度環委第5号 静岡大学教育学部 研究代表者 熊野善介, 1-127
190曽我幸代(2013)「ESD における「自分自身と社会を変容させる学び」に関する一考察 ―システム思考に着目して―」, 国立教育政策研究所紀要, 第142集
191大阪府教育センター(2015アクセス), 「指導と評価の一体化」, http://www.osaka-c.ed.jp/development/shidou_hyouka_top.html
192中村恵子(2007)「構成主義における学びの理論-心理学的構成主義と社会的構成主義を比較して-」, 新潟青陵大学紀要 第7号, 2007年3月
193長洲南海男(2016). 米国におけるSTEM教育改革運動-その1 法的, 行財政的観点からの解明, 教科と内容構成新ビジョンの解明-米国・欧州 STEM・リテラシー教育との比較より, 第1回中間報告書, 27-42 
194東京大学工学部 (2014). 工学教程. 丸善出版.
195内ノ倉真吾, 石崎友規, 齊藤智樹, 今村哲史, 熊野善介, 長洲南海男 (2014). アメリカにおける STEM 教育推進の活動事例報告―アイオワ州での取り組みに着目して―,  日本科学教育学会研究会報告, Vol. 29, No. 1, 87-92. 
196日本学術会議(2008), 「提言 学校教育を中心とした環境教育の充実に向けて」, 日本学術会議環境学委員会 環境思想・環境教育分科会, 1-108
197梅埜圀夫(1991). STS(科学―技術―社会)教育の基本理念と中等生物教育での開発事例, 科学―技術―社会の相互作用を重視した中等生物教育及び教師教育用モジュールの開発, 科学研究費補助金総合研究(A)課題番号02301107中間報告書, 平成3年5月 
198鈴木みどり(2000), 「Study guideメディアリテラシー[入門編]」, 1-142, リベルタ出版
199齊藤 智樹 (2018). Eはいかに強調されたか- 米国STEM教育改革におけるE(エンジニアリング)の扱いについて-. In科学研究費補助金基盤研究(B) 課題番号: 16H03058 “日本およびアメリカにおける次世代型STEM教育の構築に関する理論的実践的研究”平成29年度中間報告書, pp.45-68
200齊藤 智樹 (2020). STEM/STEAM 教育における基礎理論の綿密化と領域横断的な概念にまつわる構造. 科学教育学会年会論文集44:235-238. ISSN 2433-2925 / ISSN-L 0913-4476.
201齊藤 智樹・熊野善介(2016).LHSカリキュラムに見られる分析的な枠組みと現代スタンダードへの適用に関する研究,エネルギー環境教育学会,全国大会論文集,86-87.
202齊藤智樹(2006), 「システムアプローチを基にした環境教育の実践的研究」, 静岡大学大学院教育学研究科修士論文(未公刊)
203齊藤智樹(2017). STEM が統合された学習環境における創造性の構成概念. 21st Century Skills のタスク固有性の検討と超領域的な学習への適用 (科学的に考える資質・能力を育成するアクティブ・ラーニング), 日本科学教育学会年会論文集 日本科学教育学会年会企画委員会・年会実行委員会 編, 41, 67-70. 
204齊藤智樹, 熊野善介 (2016). 米国連邦政府による STEM 教育改革, 科学教育学会年会論文集, 40, 15-18. 

ABCは間にスペースを入れています.日本語は入れていませんが,お許しください.

(Visited 90 times, 1 visits today)